AGENDA

DATE: Monday, January 12, 2015

TIME: 5:30 PM

PLACE: Public Works Center (Second Floor Conference Room), 15 South Smith Street

1. Call to Order

2. Executive Session to discuss ongoing litigation with Flowserve about main lift pumps’ failure

3. Approve the minutes from WPCA Meeting held on December 15, 2014 (copy included)

4. Approve sewer use fee adjustment for 107 South Main Street (letter included)

5. Authorize the Chairman or Vice Chairman of the Water Pollution Control Authority to execute an agreement with Arcadis U.S., Inc. in the amount of $482,879 to provide professional engineering services (Parts A and C) for the Main Influent Pump and Relatec Equipment Replacement Project in accordance with a Scope of Work dated January 8, 2015 (copy included, representative from Arcadis to attend).

 Account No. 224062-5789

6. Reports:
 a. FY14/15 Revenues/Expenditures MUNIS Reports (copy included)
 b. Discussion on the Sammis Street Pump Station (report included)
 c. Sewer Use Bill Appeals/Adjustments Update
 1) Appeal status
 d. Information Copies:
 1) OMI Monthly Operating Report – December 2014 (copy included)

7. Adjournment

Next WPCA Meeting: Monday, February 9, 2015
5:30 PM
Second Floor Conference Room, Public Works Center
15 South Smith Street
1. CALL TO ORDER

Chairman Oustafine called the meeting to order at 5:30PM

2. EXECUTIVE SESSION TO DISCUSS ONGOING LITIGATION WITH FLOWSERVE ABOUT MAIN LIFT PUMPS’ FAILURE

** MR. MCCARTHY MOVED TO ENTER INTO EXECUTIVE SESSION
** MOTION PASSED UNANIMOUSLY
Executive session began at 5:32PM
Executive session ended at 6:10PM
No action taken

3. APPROVE THE MINUTES FROM WPCA MEETING HELD ON NOVEMBER 17, 2014 (COPY INCLUDED)

Ms. Wells said that she did not attend the meeting and her name should be removed from the attendance

** MR. MCCARTHY MOVED TO APPROVE THE MINUTES AS AMENDED
** MOTION PASSED
TWO ABSTENSIONS- MS. WELLS AND MR. PETRINI
4. AUTHORIZE TRANSFER FROM REPLACEMENT RESERVE ACCOUNT (224062-5789) TO CONTRACT OPERATIONS ACCOUNT (224062-5258) IN THE AMOUNT OF $200,000 TO REIMBURSE OMI AND THEIR WASTEWATER AND COLLECTION SYSTEM MAJOR REPAIR AND REPLACEMENT FUND (MRR)

Mr. Kolb said that OMI, Inc. has paid out approximately $200,000 in repair costs for the main lift pumps and the funds have been taken from the MRR account. He said that the MRR account is to be used for both the Wastewater Treatment Plant and the collections system, and the costs for the Wastewater Treatment Plant is digging into the funds that need to be used for repairs to the collection system. Mr. Hamilton requested a detailed report be provided on the repairs and the costs of what has been done so far and the repairs and costs moving forward. After further discussion it was decided that staff would provide a detailed report at the January meeting.

**MR. FLYNN MOVED TO APPROVE THE ITEM
**MOTION PASSED UNANIMOUSLY

5. REPORTS

a. FY13/14 and FY 14/15 Revenues/Expenditures MUNIS Report (copy included)
Mr. Kolb reported on the FY 13/14 report and said that everything is tracking as anticipated.

b. Draft FY 2015-16 Capital Budget (copy included)
Mr. Kolb reported and said that for fiscal year 2015-16 staff is requesting $3,000,000 million dollars for the main lift pump replacement, and $1,000,000 is being requested for the Ely Avenue and Bouton Street hydraulic repair.

c. Discussion or the Sammis Street Pump Station (report included)
Mr. Kolb reported and said that CL&P has installed the primary power transformer, and in addition to that there was two 1” water taps installed for the local hydrant so that the vacuum trucks or other City vehicles can fill with water without having to drive back to the Public Wrks Center. He said that once CL&P has completed the installation of the transformer the contractor will complete their work and begin the bypass and the startup is anticipated to be in January 2015.

d. Sewer Use Bill Appeals/Adjustments Update
 1) Appeal Status
 Mr. Kolb said that the adjustments to date are $102,924

e. Information Copies:
 1. OMI Monthly Report- November 2014 (copy included)
 Mr. Kolb reported and said that nitrogen fell into band “D”. He reported on the collection system progress meeting and the sanitary sewer CCTV and cleaning summary and said that OMI, Inc. has a good system and that they are also doing manhole inspections. Mr. James Clark said that there appears to be a lot of requestis
in the miscellaneous category and requested that they be broken out into more into a certain category so that more detail is provided.

2. WPCA Contact List Update (copy included)
 No discussion.

3. Harbor Watch Mission (letter from Earth Place included)
 Mr. Kolb said the WPCA received a letter of appreciation from Earth Place which is an organization that researches anything that is causing water pollution concerns or issues. He said that Mr. Harris of Earthplace has been working with his staff on both the WPCA and DPW side and they have most recently found some illicit connections on Washington Street. He said that he would also like to recognize Jose Lopez of DPW and Kyle Bader of WPCA for their work.

4. CH2MHiill Donation to Rowayton PTA Environmental Committee (letter included)
 Mr. Kolb said that CH2MHiill has donated educational coloring and activity books to Rowayton Elementary School.

6. ADJOURNMENT

** MR. MCCARTHY MOVED TO ADJOURN
** MOTION PASSED UNANIMOUSLY

The meeting adjourned at 6:50PM

Respectfully Submitted,

Dilene Byrd
December 30, 2014

TO WHOM IT MAY CONCERN:

I Marcia Jordan the owner of 107 SO. Main ST SO. Norwalk CT. 06854. This note is to let you know this property is apartments building with 16 units restrict residential never have being commercial and nerve will be. Please reconsider the sewer charge. I will appreciate you help. Thank you,

Sincerely,

[Signature]

Marcia Jordan
Ralph Kolb, P.E.
Wastewater Systems Manager
Norwalk Water Pollution Control Authority
15 South Smith Street
Second Floor
Norwalk, CT 06855

Subject:
Norwalk Water Pollution Control Facility
Request for Proposal – Main Influent Pump and Related Equipment Replacement Project

Dear Mr. Kolb:

As requested, ARCADIS is pleased to submit our proposal to assist the WPCA with the Main Influent Pump and Related Equipment Replacement at the Norwalk Water Pollution Control Facility (WPCF).

We understand the critical nature of the Main Influent Pumps, and the impact that the persistent maintenance and resulting downtime has on the WPCA’s operations. ARCADIS commits to treating this evaluation and design with the urgency it warrants, and will be diligent in addressing the situation in a timely manner.

Our scope of services is described in detail in the attached proposal, with overall costs for performing the work identified. We intend to review the hydraulics and pump selection performed by CDM-Smith, and utilize that information to prepare detailed design documents for the Main Influent Pump and Related Equipment replacement. In addition, we have provided an outline of staff proposed for assignment to this project and their qualifications.

We look forward to assisting the WPCA with implementing this important project. Should you wish to review or discuss any aspect of the attached documentation, do not hesitate to contact me.

Sincerely,

ARCADIS U.S., Inc.

Gregory S. Bazydoia, PE
Vice President

Copies:
File

Imagine the result
Project Team Qualifications

Greg Bazydola, PE
Project Manager

Greg's experience has focused on the design and construction of municipal wastewater facilities, including pumping stations. His work has involved all phases of design and construction from conceptual level through engineering analysis, detailed layout, resident engineering, and ultimate startup.

Vanessa McPherson, PE
Assistant Project Manager

Vanessa has extensive experience with various aspects of wastewater transmission and treatment design. Her background includes process planning, design, preparation and coordination of design documents, bidding, and construction administration. She has worked on multiple pump station projects in Connecticut.

Tim McDonald, PE
Design Quality Leader

Tim has over 15 years of experience in detailed design of pump stations and wastewater treatment plants. Tim has followed his designs through construction and startup and is well versed in the procedures associated with design and construction. He has worked extensively in Connecticut.

Charlie Hurst, PE, BCE
Technical Advisor

Charlie is a senior engineer with extensive experience in pump system design and the application of pumps in wastewater facilities. His experience includes all facets of pumping systems including hydraulics, pump selection, layout, controls, piping, and other critical pumping system appurtenances.
Project Team Qualifications

Catherine Mallon Traynor
Client Service

Cathy has served as the Principal in Charge for Norwalk WPCA on behalf of ARCADIS, and recognizes the importance of implementing policies, procedures and project controls to effectively plan and oversee projects.

Lailani Metzler
Commissioning Leader

Lani has a diverse background in wastewater facility operations and management, including O&M best practice assessments, field inspection of process operations and equipment condition, facility startup, operator training, and implementation of facility computerized maintenance management systems.

Robert Nowell
Construction Support

Bob is a project designer with extensive experience in the design and layout of all phases of planning and design of municipal wastewater treatment facilities and water and sewage pumping stations. In this capacity, he has been involved from conceptual through detailed design to field assistance during construction.
Project Team Qualifications

Justin Minadeo, PE
Structural Design Leader

Justin has experience performing numerous structural condition assessments of existing facilities and providing engineering services during construction. His project responsibilities include developing design criteria, performing structural analysis/design calculations and writing specifications.

Ryan Kowalski, PE
Instrumentation and Controls Design Leader

Ryan is responsible for design and construction supervision of SCADA, instrumentation and automation systems for wastewater treatment systems. His focus is on process control automation evaluation and design, telemetry/network design, configuration, evaluation of instrument systems, and system startup/commissioning.

Patrick Daigle, PE
Electrical Design Leader

Pat specializes in electrical engineering. His work has involved various aspects of electrical design of large and small municipal wastewater treatment processes, including the design of power distribution, generators, lighting, grounding, control schematics and wiring interconnections.

Vincent Vitale, PE, LEED AP
HVAC Design Leader

Vinny specializes in the management, design and construction of heating, ventilating, and air conditioning systems for municipal, commercial and industrial applications. He is particularly well versed in building control modifications, as well as HVAC system cost saving measures.
TECHNICAL SCOPE OF DESIGN PHASE AND CONSTRUCTION PHASE
ENGINEERING SERVICES

NORWALK WATER POLLUTION CONTROL AUTHORITY
MAIN INFLUENT PUMP REPLACEMENT

Part A – Design Phase

A.1 Description and Scope

The general intent of the project is to prepare a bid package for the replacement of the Main Influent Pumps and all related equipment. The basic scope is as outlined below.

ARCADIS was provided the November 14, 2014 CDM-Smith (draft) memorandum entitled “Norwalk CT Water Pollution Control Facility Main Influent Lift Pump Options” with Attachment A only. The memorandum outlined the issues with the existing pumping equipment and recommendation to replace the existing pumps and VFDs with new pumps and new VFDs provided by ITT Flygt. This task item includes the drawing and specifications (base design) required to implement the design solution.

ARCADIS will review the pump selection included in the CDM-Smith memorandum dated November 14, 2014 and verify the design point of the pump (proposed rated flow and TDH). In order for ARCADIS to take ownership of the pump selection, a full hydraulic review will be completed. This will include system hydraulics, system operation evaluation, pump operation range, and final pump selection. Our budget also includes one day for a surveyor to confirm critical pump station elevations shown on the record drawings. The WPCA shall provide the preliminary design information (available hydraulics, system curves, pump selections, design memorandums, layout drawings) prepared by CDM-Smith relative to the Main Influent Pump and related equipment for reference by ARCADIS. ARCADIS will provide an alternative selection for consideration by the Norwalk WPCA if the CDM-Smith selection is not acceptable to ARCADIS. This will be completed prior to initiating the 30% Basis of Design Phase.

The scope will include development of detailed design drawings for the implementation of the selected pumps and related equipment, including all provisions for staging and maintenance of plant operations (MOPO) during construction for pumps and related equipment replacement. It is anticipated that only one pump will be out of service at any one time and therefore a design of a bypass pumping system is not required.

The existing pump pads will be demolished and new pads constructed. In addition, modifications to the discharge piping layout may require structural modifications to concrete pipe supports. Pads for VFDs in the electrical room may also require modification to accommodate proposed equipment.

Modifications to the pump VFDs will be required, and the electrical room air conditioning
/ ventilation capacity will be reviewed to ensure adequacy for the increase in heat rejection that may result. ARCADIS shall review the existing Electrical Room HVAC system and recommend improvements if required to prevent over-heating of the space. The scope will include increasing the capacity of the HVAC equipment if necessary.

Given the constrained nature of the existing dry well and electrical room, ARCADIS proposes utilizing 3D CADD for the detailed design of the pump and related equipment replacement to verify installation of equipment while minimizing potential conflicts with existing equipment in the field. The 3D model that will be generated will be used for design review meetings, staging/sequencing, and to produce the 2D Contract Drawings. CAD versions of the preliminary layout drawings as well as facility record drawings prepared by CDM-Smith will be made available to ARCADIS for use.

Activities
- Review preliminary layout drawings prepared by CDM-Smith.
- Verify the proposed rated flow and TDH of the proposed ITT Flygt pumps against existing operating information (flow and TDH)
- Process Mechanical (pumps and piping), HVAC, Structural, Instrumentation & Control and Electrical design required for the scope of work identified above
- 30% Basis of Design Memorandum and Review Workshop
- 90% Design and Review Workshop

A.2 Design Deliverables

ARCADIS shall be responsible for final preparation of the complete bid package for the Main Influent Pump and related equipment Replacement. It is assumed that the pumps, VFDs, and control monitoring units will be a package system furnished by ITT Flygt or similar and will be a sole source procurement from a single supplier. ARCADIS will work closely with the pump supplier during the design phase in order to include specific design details within the bid package to reduce coordination and shop drawing development by the contractor. ARCADIS shall be responsible for preparation of final design plans, specifications, bid quantities, and cost estimates for all work presented herein. The work will be designed as one prime Contract.

There are several phases of final design for the Main Influent Pump and related equipment Replacement, each with a set of deliverables related to technical work as described below.

A.2.1 Notice to Proceed to 30% Basis of Design Memorandum

The purpose of this stage of design is to provide a memorandum that demonstrates ARCADIS' general intent and understanding of the project scope and to present the design criteria and ARCADIS' approach to completing the project. The memorandum shall include 30% design drawings of sufficient detail to demonstrate that all major project scope items have been accounted for. Drawings at this stage will include layouts for major process mechanical piping and equipment; and electrical drawings including
one-line diagrams depicting critical new work and system modifications. The memorandum shall also include specifications for the major pieces of equipment, discussions regarding pump flow rate and head; HVAC equipment evaluation and resizing (if necessary); instrumentation and control, structural pad and electrical modifications.

A constructability review will be performed by ARCADIS staff with specific experience in this area. A summary of results and considerations will be included in the 30% Basis of Design Memorandum.

An Opinion of Probable Construction Cost will be prepared and submitted. The cost estimate will be prepared to a Class 3 level of accuracy (+30% to -40%) as defined by the Association for the Advancement of Cost Engineering (AACE).

ARCADIS shall provide the following copies of progress design documents to the WPCA at this design milestone:

- Drawings – 5 copies (half size)
- Specifications/Basis or Design Memorandum – 5 copies bound
- 3 compact disks (CDs) with drawings and specifications

ARCADIS shall meet with the WPCA to review the 30% Basis of Design and discuss comments received regarding the submittal. ARCADIS shall document the events of the meeting and provide a detailed listing of all comments and the proposed resolution as a deliverable and documentation of this review meeting. ARCADIS shall plan to attend a minimum of one (1) four hour meeting for this task.

A.2.2 90% Design

The purpose of this stage of design is to set forth, in detail, the requirements for construction and implementation of the entire construction project in the Construction Contract Documents, and provide a revised estimate of project cost.

All comments from previous Design reviews will have been addressed. Contract drawings (all sheets including notes, plans, sections, and details) shall be at “Final” status pending review and comments.

ARCADIS shall submit an opinion of probable construction cost based on the 90% Design. The cost estimate will be prepared to a Class 2 level of accuracy (+10% to -15%) as defined by the AACE.

ARCADIS shall provide the following copies of progress design documents to the WPCA at this design milestone:

- Drawings – 5 copies (half size)
- Specifications/Basis or Design Memorandum – 5 copies bound
- 3 compact disks (CDs) with drawings and specifications
ARCADIS shall meet with the WPCA to review the 90% Design and discuss comments received regarding the submittal. ARCADIS shall document the events of the meeting and provide a detailed listing of all comments and the proposed resolution as a deliverable and documentation of this review meeting. ARCADIS shall plan to attend a minimum of one (1) four hour meeting for this task.

A.2.3 100% Design (Bid Ready)
The purpose of this stage of design is to make any necessary revisions to the 90% Construction Contract Documents based on review by the WPCA, and prepare 100% Design (Bid Ready) documents. Completed bid forms will be included in the specifications.

All comments from 90% Design reviews shall have been addressed. The 100% Design (Bid Ready) contract drawings and specifications shall have the licensed Professional Engineer stamp affixed.

ARCADIS shall work with the pump manufacturer to secure a pre-negotiated price for the pumps and related equipment. The cost information will be included in the 100% Design (Bid Ready) documents for use by prospective bidders.

ARCADIS shall provide the following copies to the WPCA for the final bidding documents:
- Drawings – 5 copies (half size)
- Specifications – 5 bound copies
- 3 compact disks (CDs) with drawings and specifications

A.3 Bidding Services
ARCADIS shall provide services during the bidding of the construction documents. Services shall include attendance at one pre-bid meeting for the project, responding to contractor requests for clarification during the bidding services and review and analysis of the bid submittals. ARCADIS shall prepare Addenda as required to address all issues and questions. Bid reviews by ARCADIS will result in a memorandum prepared by ARCADIS with recommendations to the WPCA for awarding to the lowest responsible bidder.

ARCADIS shall also prepare “conformed” drawings and specifications. Conformed documents shall incorporate all addenda items into the drawings and/or specifications, and shall be signed and stamped by ARCADIS. Drawing changes shall be marked by a revision triangle indicating in what numbered addenda the change was originally made.

ARCADIS shall provide the following copies to the WPCA for the conformed for construction documents:
- Drawings – 5 copies (3 half size, 2 full size)
- Specifications – 5 copies bound
- 3 compact disks with drawings and specifications

A.4 Time of Completion

All design work shall be completed, stamped and signed with 100% Documents (Bid Ready) submitted to the WPCA within the number of days indicated below.

<table>
<thead>
<tr>
<th>Event</th>
<th>Calendar Days from NTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>0</td>
</tr>
<tr>
<td>Kickoff Meeting</td>
<td>7</td>
</tr>
<tr>
<td>30% Basis of Design Report</td>
<td>45</td>
</tr>
<tr>
<td>Submittal</td>
<td></td>
</tr>
<tr>
<td>30% Submittal Review Meeting</td>
<td>50</td>
</tr>
<tr>
<td>90% Submittal</td>
<td>90</td>
</tr>
<tr>
<td>90% Review Meeting</td>
<td>95</td>
</tr>
<tr>
<td>Final Bid Deliverable Submittal</td>
<td>120</td>
</tr>
</tbody>
</table>

* Schedule does not include the time required for optional design services if authorized.

Part B – Construction Administration

B.1 General Scope of Work

The engineering services during construction, commissioning, and close-out services will generally consist of the following: review submittals; review and respond to requests for information (RFIs) and requests for clarification; interpret contract documents; conduct periodic site visits; attend and facilitate construction project meetings; review progress of construction; develop requests for proposals, change orders, and Work Change Directives; review and evaluate change order proposals; prepare change orders, maintain logs for submittals, RFIs, change order proposals and change orders; provide technical support; monitor contractor’s general conformance with the Contract Documents; provide field support during start-up; provide field support to the WPCA and contractor during process/plant shutdowns; develop Operation and Maintenance (O&M)
Manual(s) and Standard Operating Procedures (SOPs); provide and/or coordinate operator SOP training; participate in technical inspections of the project, substantial completion inspection and final walk-through; review punch list; prepare record drawings; and participate in close-out meeting with contractor and the WPCA and their representatives.

The scope of the engineering services during construction, commissioning and close-out services is further described below:

B.2 Engineering Services During Construction

ARCADIS shall provide general engineering services during construction for the duration of the construction phase of the project. ARCADIS shall attend all project meetings (pre-construction, progress), coordinate attendance, and prepare for agenda items and meeting minutes as required, unless otherwise noted.

The duration of ARCADIS' engineering services during construction will coincide with the duration of the contract for construction.

B.2.1 Project Management

Task includes monthly reports, invoicing, team and subcontractor coordination, contract communications, scheduling, and oversight. The duration for overall project management shall be the anticipated duration of construction is 18 months.

ARCADIS shall provide consultation and advice during construction and provide technical engineering support during construction activities. Update and modify the Contract Documents to meet changed project conditions as necessary to supplement and/or provide clarity to the Contract Documents during the construction phase of the project (to address RFIs, Change Orders, and other issues requiring modified Contract Documents). This does not include revisions required for Record Drawings as required in subsequent sections of this Scope.

B.2.2 Attend Pre-Construction Conference

A meeting will be held between the Contractor, WPCA, and ARCADIS prior to the start of construction to coordinate the start of construction, review any issues that may have arisen, and discuss the expectations of the parties involved. ARCADIS shall coordinate the preparation of meeting documents, such as the agenda with the WPCA, distribute information prior to the meeting, and record meeting minutes. ARCADIS shall assume one (1) attendee at this meeting.

B.2.3 Construction Progress Meetings

ARCADIS shall assume eighteen (18) one hour progress meetings, held periodically as deemed necessary by the WPCA and Contractor. ARCADIS shall assume two (2) attendees at this meeting.

In addition to attendance at the progress meetings, ARCADIS shall facilitate the meetings, prepare a package for each meeting containing agenda, a summary of open
submittals, RFIs, and PCO/Change Order to be reviewed at each meeting, and a 3-week look ahead schedule (to be provided by Contractor), and other documentation that may be required for meetings that are not specified. Meeting minutes will be prepared by ARCADIS and provided to the WPCA.

B.2.4 Issue Resolution Meetings
ARCADIS shall assume that construction related issues will arise that may require formal meetings between the Contractor, ARCADIS, and the WPCA to reach an agreeable resolution. ARCADIS shall assume three (3) one hour meetings with two (2) attendees.

B.2.5 Periodic Field Visits
ARCADIS shall assume that periodic visits to site will be required to observe progress and assure compliance with the contract documents and design intent. ARCADIS shall assume a total of twelve (12) half day visits, each attended by one (1) representative.

ARCADIS shall make visits to the site at intervals appropriate to the various stages of construction as deemed necessary to monitor the Contractor’s work for compliance with the Contract Documents as outlined above. The visit may coincide with the progress meeting if the progress meeting is held on site. Such visits and observations are not intended to be exhaustive or to extend to every aspect of the work in progress, or to involve detailed inspections of the work beyond the responsibilities specifically assigned to ARCADIS in this scope of services and the Contract Documents, but rather are to be limited to spot checking, selective sampling and similar methods of general observation of the work based on ARCADIS’ exercise of professional judgment as assisted by the WPCA. Based on information obtained during such visits and such observations, and from the WPCA, ARCADIS shall determine in general if such work is proceeding in accordance with the Contract Documents and shall keep the WPCA informed of the progress of the work.

During the site visits, ARCADIS shall notify the WPCA if ARCADIS believes that work should be rejected because such work will not produce a completed Project that conforms generally to the Contract Documents or that it will prejudice the integrity of the design concept of the completed Project as a functioning whole as indicated in the Contract Documents.

ARCADIS shall coordinate with the Resident and review the Resident’s logs, notes and punch-lists as part of the site visits. ARCADIS shall assume a minimum of two (2) half day punch lists reviews.

B.2.6 Review of Submittals and Shop Drawings
ARCADIS shall review all shop drawing submittals prepared by the Contractor along with associated illustrations, samples, and other submittals required by the Contract Documents. ARCADIS shall assume 40 submittals require review.

ARCADIS shall review and respond to all submittals, shop drawings, samples within
fourteen (14) calendar days. ARCADIS shall coordinate and track submittals, including preparing and maintaining a submittal log, and ARCADIS will distribute the shop drawings and submittals. Copies of each submittal including subsequent revisions shall be provided to the WPCA.

B.2.7 Respond to Requests for Information (RFI)
ARCADIS shall respond to Requests for Information submitted by the contractor. ARCADIS shall assume 30 RFIs require response.

ARCADIS shall coordinate and track RFI’s, including preparing and maintaining a RFI log. Copies of each RFI including responses and subsequent revisions shall be provided to the WPCA.

B.2.8 Contractor Change Orders
ARCADIS shall review contractor’s Change Orders and provide a recommendation to the WPCA as appropriate. ARCADIS shall assist the WPCA in the preparation of the final Change Order document, review and evaluate change orders proposed by the contractor and provide a response. ARCADIS shall assume 3 proposed change order reviews.

B.2.9 Develop Requests for Proposal (RFP)
ARCADIS shall assume that additional changes in the project scope will occur during construction that will require ARCADIS to develop a request with supporting information for the contractor to review and submit a proposal for. ARCADIS shall assume that 2 RFPs require development.

B.2.10 Review Vendor Supplied Material
ARCADIS shall review vendor supplied equipment operations and maintenance manuals, installation reports, and test and certification reports for conformance with the Contract Documents. ARCADIS shall assume the 5 reports require review.

B.2.11 Applications for Payment
The review and recommendation of approval of payment requisitions issued by the Contractor will generally be covered by the WPCA and Resident assigned to the project. However, ARCADIS shall provide assistance when requested for clarification or interpretations of the Contract Documents are necessary. In addition, ARCADIS shall review the Schedule of Values which serves as the basis for the Payment Applications when submitted by the Contractor.

B.2.12 Support for the Development of Maintenance of Plant Operations (MOPOs) Plans
ARCADIS shall support the Contractor in the development of detailed MOPOs that are required to complete this project. The contractor’s plans shall build from what has been provided in the contract documents and this support is meant to improve the process and ensure a successful tie-in or shutdown.
B.3 Startup Services
ARCADIS shall provide commissioning services during project startup as outlined below and take the lead role in planning, scheduling, and coordinating commissioning activities.

B.3.1 Commissioning Team Meetings
ARCADIS shall attend meetings with the WPCA, contractors, and any necessary vendors or equipment representatives to coordinate system and equipment startups. ARCADIS shall assume attending two (2) one hour meetings with two representatives of ARCADIS. ARCADIS shall facilitate the meetings, and ensure receipt and approval of all required documentation prior to commissioning (O&M manuals, trainer resumes, proposed lesson plans, etc.)

B.3.2 Field Support During Start-up
ARCADIS shall provide on-site personnel during equipment startups to provide assistance to the contractor and equipment vendors as needed and to confirm that equipment is performing as designed and expected. ARCADIS shall assume a minimum of four (4) one day site visits and ten (10) work days by one (1) ARCADIS for this task.

ARCADIS shall provide technical engineering support and on-site personnel for specific functional and performance testing that may be required by the Contract Documents to confirm that specified process systems are performing as designed and specified. This shall include providing assistance to the WPCA in coordination of required testing with the contractor, WPCA, and other agencies (as may be required). The work associated with this item shall include all the development of start-up plans, testing forms/documentation, scheduling, observing testing, compiling results, and other activities required by the Contract Documents. This work shall be provided as a separate sub-task for Field Support during Start-up.

B.4 Close Out
ARCADIS shall provide close out services for the project. This will include receiving, reviewing and transmitting to the WPCA with written comments maintenance and operating instructions, schedules, guarantees, certificates of inspection, tests and approvals, and marked-up record documents (including Shop Drawings, Samples and other approved data, and marked-up record Drawings) which are to be assembled by the Contractor in accordance with the Contract Documents to obtain final payment. ARCADIS shall prepare record drawings based on the marked-up documents provided by the Contractor. These services shall include the following:

B.4.1 Record Drawings
ARCADIS shall prepare record drawings that reflect as-built conditions based on information provided by the WPCA, the construction contractor, and ARCADIS’ own on-site inspections. ARCADIS shall reconcile and log that all construction document changes (i.e., shop drawings, RFIs, Field Change Orders, etc.) have been incorporated into the record drawings. ARCADIS shall assume one week of full time effort by one (1)
B.4.2 Substantial Completion
Following notice from the Contractor that the Contractor considers the entire work ready for its intended use, ARCADIS and the WPCA, accompanied by the Contractor, shall conduct an inspection to determine if the work is substantially complete. ARCADIS shall deliver a one-page certificate of Substantial Completion to the WPCA and Contractor after the resolution of any objections of the WPCA and ARCADIS and after it is mutually agreed upon by the WPCA and ARCADIS that the certificate of Substantial Completion shall be issued.

Before ARCADIS issues a Certificate of Substantial Completion, submit to Contractor a list of observed items requiring completion or correction (Punch list).

ARCADIS shall assume six days of full time effort by one (1) ARCADIS employee for this task.

B.4.3 Final Site Inspection
ARCADIS shall perform a final site inspection and walk-through of all the project areas with the WPCA, CM, Resident and Contractor to determine final completion status. ARCADIS shall prepare a final report and submit it to the WPCA for review and acceptance. ARCADIS shall assume one day of full time effort by one (1) ARCADIS employee for this task.

B.4.4 Close Out Meeting
ARCADIS shall attend a one hour close out meeting with the WPCA and construction contractor to officially close-out the project and to discuss warranty procedures. ARCADIS shall assume one (1) one hour meeting with one (1) ARCADIS attendee.

B.5 Resident Engineering Services
ARCADIS shall provide a Resident who is qualified to perform the required duties. The WPCA shall review and accept the representative ARCADIS proposes for this assignment. The Resident shall have current OSHA certification as required by the project and WPCA and shall obtain all required safety training required by the WPCA. The Resident shall be billed on an hourly rate basis, with a not to exceed cost established based on the anticipated construction duration. The purpose of the Resident will be to provide the WPCA a greater degree of confidence that the completed Work will conform generally to the Contract Documents and that the integrity of the design concept as reflected in the Contract Documents has been implemented and preserved by Contractor.

The Resident is ARCADIS’ agent at the site, will act as directed by and under the supervision of ARCADIS and WPCA, and will confer with ARCADIS and WPCA regarding Resident’s actions. Resident’s dealings in matters pertaining to the on-site Work shall in general be with ARCADIS and Contractor, but keeping the WPCA advised.
as indicated below and as appropriate. Resident's dealings with subcontractors shall only be through or with the full knowledge and approval of Contractor, including their superintendent. Resident shall generally communicate with WPCA with the knowledge of and under the direction of ARCADIS.

Part C – Optional Services

C.1 Optional Design Phase Services

C.1.1 Detailed Pump Station Hydraulic Modeling
ARCADIS shall engage the services of a sub-consultant specializing in hydraulic modeling and analysis to review the wet well configuration and pumping system. The first step will be a desktop study that will provide feedback on the layout and operation of the pumping system. The proposed desktop study would include a review of the pump station history and performance, a site visit to observe pump performance and an analysis of the design drawings for the existing configuration. The existing design would be compared with the Hydraulic Institute (HI) standards for the design of pump stations to determine if any aspects of the forebay are non-standard. A desktop study is helpful in determining if there are any aspects of the design that impact the hydraulic performance and may be contributing to pump performance issues. However, non-compliance with HI guidelines does not necessarily indicate a problem. The HI standards allow for non-standard designs if they are investigated with a physical model to verify performance. A budget of $11,000 has been established for the desktop study.

Following the desktop study, the results will be reviewed with the WPCA and a decision will be made whether a physical model will be constructed. Physical models allow identification and analysis of problems associated with vortex formation or excessive swirl. The goal of the physical model will be to examine current wet well configuration to identify any issues which may impact pump operation. The model will also be utilized to examine changes proposed. A final report shall be submitted documenting all of the results and recommendations.

C.1.2 Update to Collection System Model
ARCADIS developed a hydraulic model of the Norwalk WPCF collection system in 2007 after completion of flow metering in 2005-2006. The Norwalk WPCA has indicated that they have completed improvements/repairs within the collection system, most notably the repair of a collapsed section of the 48 inch West Interceptor, and would like to update the hydraulic model to reflect these improvements. ARCADIS has included an allowance item to update key areas of the collection system model to reflect recently completed repairs.
C.2 Application Engineering Support Services (AESS)

If authorized by the WPCA, ARCADIS will contract with NIC Systems to complete the integration of the new pumps and VFDs into the existing PLC located in the Electrical Room. We do not anticipate any PLC logic modifications at this time, the pump station overall operation will remain unchanged. NIC Systems shall complete the following tasks:

1. Design Review: Review new VFD drawings for integration into existing SCADA System
2. Drawing Modifications: Revise control system electrical schematics and existing revise loop drawings.
3. PLC Program and SCADA Software Revisions: Work is limited to updating alarms, modifying trends, minor modifications to the graphic screens, report modifications and the installation of the SCADA revisions onsite.
4. Coordination Meetings: Attend two onsite meetings.
5. Loop Checks: Review installation with contractor
6. Installation Testing and Start-up: Be onsite for each pump start-up and confirm SCADA revisions.
7. Final Documentation: Provide updates to O&M and training on the revisions to the system.
Norwalk WPCA

Main Influent Pump and Related Equipment Replacement Project

Fee Tables
Norwalk Water Pollution Control Authority
Main Influent Pump Replacement Project

Summary of Engineering Fees

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Type</th>
<th>ARCADIS</th>
<th>SUB</th>
<th>Total Budget</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A (A.1 thru A.4)</td>
<td>Design Phase & Bidding Services</td>
<td>Lump Sum</td>
<td>$202,726</td>
<td>$8,800</td>
<td>$211,526</td>
<td>SUB - Surveyor</td>
</tr>
<tr>
<td>Part B (B.2 thru B.4)</td>
<td>Construction Administration Services</td>
<td>T&M</td>
<td>$141,410</td>
<td>$ -</td>
<td>$141,410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>$531,528</td>
<td>$8,800</td>
<td>$540,328</td>
<td></td>
</tr>
<tr>
<td>Part C (C.1.1)</td>
<td>Detailed Pump Station Hydraulic Modeling</td>
<td>Lump Sum</td>
<td>$19,520</td>
<td>$176,000</td>
<td>$195,520</td>
<td>SUB - Alden Labs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Includes $11K for Desktop Study</td>
</tr>
<tr>
<td>Part C (C.1.2)</td>
<td>Update to Collection System Model</td>
<td>Allowance</td>
<td>$50,000</td>
<td>$ -</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>$69,520</td>
<td>$201,833</td>
<td>$271,353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>$601,048</td>
<td>$210,633</td>
<td>$811,681</td>
<td></td>
</tr>
</tbody>
</table>
Norwalk WPCA

Main Influent Pump Replacement

Construction Phase Hour Summery

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Principal Engineer</th>
<th>Senior Engineer I</th>
<th>Senior Engineer II</th>
<th>Discipline Leader</th>
<th>Staff Engineer</th>
<th>Document Technician</th>
<th>Project Assistant</th>
<th>Total Hours</th>
<th>Total Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Administration Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.1 Project Management</td>
<td>48</td>
<td>3</td>
<td>100</td>
<td>48</td>
<td>175</td>
<td>40</td>
<td>18</td>
<td>636</td>
<td>$100,522</td>
</tr>
<tr>
<td>B.2.2 Pre-Construction & Progress Meetings</td>
<td>16</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.4 Issue Resolution Meetings</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.5 Periodic field visits to observe progress</td>
<td>8</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.6 Shop Drawing Review</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.7 RFPs</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.9 RFPs</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.10 Review of Vendor Supplied Material</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning Services</td>
<td>16</td>
<td>64</td>
<td>26</td>
<td></td>
<td>40</td>
<td></td>
<td>40</td>
<td>186</td>
<td>$34,090</td>
</tr>
<tr>
<td>B.3.1 Commission Meetings</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.3.2 Field support during start-up</td>
<td>16</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close Out</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>16</td>
<td>18</td>
<td>46</td>
<td></td>
<td></td>
<td>$6,798</td>
</tr>
<tr>
<td>B.4.1 Prepare record drawings</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.4.2 Substantial Completion</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.4.3 Final Site Inspection</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.4.4 Close Out Meeting</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resident Engineering Services</td>
<td>0</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1024</td>
<td>$187,292</td>
</tr>
<tr>
<td>TOTAL HOURS</td>
<td>64</td>
<td>1,096</td>
<td>354</td>
<td>88</td>
<td>232</td>
<td>40</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$14,720</td>
<td>$200,568</td>
<td>$54,162</td>
<td>$20,240</td>
<td>$32,016</td>
<td>$4,720</td>
<td>$2,376</td>
<td></td>
<td>$328,802</td>
</tr>
</tbody>
</table>
December 30, 2014

Ms. Vanessa McPherson, PE
ARCADIS US Inc
44 S. Broadway, 15th Floor
White Plains, NY 10601

Dear Ms. McPherson,

In response to our telephone conversation earlier today, Alden is pleased to submit this scope of work and budgetary proposal to support ARCADIS in the investigation of pump performance issues at the Norwalk WPCF. Recognizing that a proposal and budget was required by December 31, the proposal is brief and does not include the level of detail that may be expected for this type of project.

The Main Influent Pumps at the Norwalk WPCF were replaced in 2012; at the same time modifications were made to the wet well. Since the new pumps have been installed multiple seal failures have occurred. To date, no pattern to the seal failures has been identified. It has been reported that the previous pumps did not experience excessive seal failure. ARCADIS has visited the pump station during normal operations and did not witness excessive noise, rumbling of the pumps or surface vortex formation that would indicate excessive air entrainment. Some pump vibration was noted, and ARCADIS recommended to the owner that a more detailed vibration analysis be considered. ARCADIS has asked Alden to provide a scope of work to support an investigation of the pump performance issue with the goal of understanding the root cause of the seal failure. The scope was requested to include a step wise approach starting with a desktop study, then advancing to a CFD study and possibly culminating in a physical model study. If the cause of the vibration is determined at any point in this sequence, subsequent steps may not be completed unless necessary to fully evaluate the performance of recommended solutions.

Desktop Study
The proposed desktop study would include a review of the pump station history and performance, a site visit to observe pump performance and an analysis of the design drawings for the existing configuration. The existing design would be compared with the Hydraulic Institute (HI) standards for the design of pump stations to determine if any aspects of the forebay are non-standard. The following steps would also be completed:

- Site visit
- Review of pre 2012 drawings and existing condition drawings, identifying changes in the pump station layout.
- Review of the existing condition drawings, identifying aspects of the design that may not be compliant with the HI.
- Review of the SCADA data from the pump station controls to search for patterns in the seal failure. This will contribute to understanding which pump experiences the most frequent failures per hour of run time, which contributes to understanding which pump may have the most adverse approach flow conditions.
• Prepare a letter report documenting the findings and presenting potential causes of the premature seal failure.
The desktop study could be completed in 2 to 4 weeks.

CFD Study
A desktop study is helpful in determining if there are any aspects of the design that impact the hydraulic performance and may be contributing to the seal failure problem. However, non compliance with HI guidelines does not necessarily indicate a problem. The HI standards allow for non standard designs if they are investigated with a physical model to verify performance. Following the Desktop Study, a computational fluid dynamics (CFD) study is proposed to understand how flow patterns have changed since the pump station modification. Two CFD models will be built: one of the pre 2012 condition and one of the existing condition. The CFD model will be able to show how the approach flow patterns to the pumps have changed pre and post modification. The model will be completed using Fluent or Star-CCM, both of which all the use of an unstructured boundary fitted grid. The unstructured grid allows the model to have variable cell sizes without the need for a mesh interface, and is there more desirable than FLOW-3D which Alden also uses extensively. It is proposed that initially three flow conditions will be evaluated in each model. The three conditions will be selected from the SCACDA data analysis. A report will be prepared summarizing the findings of the model. The cost of a CFD investigation can vary significantly depending on the physics that must be included in the model. Those physics will not be known until the desktop study is complete. For budgeting purposes, the following assumptions have been made about the CFD model:

• The water surface throughout the pump station is relatively flat and does not include a deformed free surface. The CFD model will approximate the water surface as a fixed elevation full slip boundary that does not impart any resistance to flow.
• The 72 inch influent pipe is assumed to be straight outside the pump station walls with uniform flow entering the pump station.
• The mechanical bar screens will be simulated as a porous media with a headloss coefficient provided by the screen vendor or as measured at the pump station.
• The model will resolve all of the necessary and relevant pump station geometry
• Three flow conditions will be simulated in each model.
• The model will include the pump bells and a short section of piping to the wall penetration into the dry well.
• The model will not include any moving parts or any aspect of the pumps.
• Swirl in the flow will be quantified at the wall penetration.
• The model will assume a define flow for each pump, those flows will not be couple to the approach flow conditions, i.e. flow through a pump will not automatically increase when there is an increase in the suction pressure at a pump.
• The model will include influent from above as was shown in the photograph provided with the plant drawings. The influent will be simulated as a mass/momentum source at the water surface.
• The model will not simulate air entrainment or air transport.

It is expected that the CFD modeling effort will show if the modifications to the pump station significantly alter the approach flow patterns to the pumps. As an option, only the model of
the existing condition could be completed. Obvious deficiencies in the flow patterns could be identified, but there would be no basis for comparison.

CFD models have limitations in their ability to predict swirl and they are unable to predict the strength of a vortex. For this reason, the HI does not permit the exclusive use of CFD in the design of pump intakes. The HI requires all pump intake studies be completed with a physical model to demonstrate compliance with the HI Standards. This requirement is reviewed regularly and is consistent with the current capabilities of numeric models.

A final report will be prepared which presents the findings of the modeling effort. The study would be completed in 8 to 12 weeks.

Physical Model
The results of the CFD model study may yield a modification which can be readily implemented in the pump station and field tested. However, the findings may also show the need for a physical model study if the findings show a problem associated with vortex formation or excessive swirl. A physical model will be scaled and detailed budget developed if it is found that the model is necessary. Model scaling depends on the level of detail that is required for the flow entering from above. Developing a physical modeling proposal typically requires 1 to 2 weeks. For context purposes, a physical model with all six pumps is estimated to cost between $165,000 and $190,000. If the CFD model and SCADA data show symmetry about the centerline of the pump station, the cost for the physical model is estimated between $150,000 and $165,000. Construction and testing (including baseline testing, modification development, final documentation testing and a final report) of a physical model of this size and complexity typically requires 20 to 22 weeks. Alden builds and tests a large number of pump intake models every year and has a high degree of confidence in the budget estimate.

Budget and Schedule
The proposed budget and schedule are show in Table 1. Tasks are itemized to allow ARCADIS to estimate the impacts on the budget if some tasks are not completed.
Table 1: Proposed Schedule and Budget

<table>
<thead>
<tr>
<th>Task</th>
<th>Schedule</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Site visit</td>
<td>1 Day</td>
<td>$2,000</td>
</tr>
<tr>
<td>• Analysis of existing design and previous design</td>
<td>2 Weeks</td>
<td>$6,000</td>
</tr>
<tr>
<td>• Preparation of final report</td>
<td>2 Days</td>
<td>$3,000</td>
</tr>
<tr>
<td>Total Desktop Study</td>
<td>3 to 4 weeks</td>
<td>$11,000</td>
</tr>
<tr>
<td>CFD Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Create existing condition CFD model</td>
<td>2 weeks</td>
<td>$12,000</td>
</tr>
<tr>
<td>• Create pre 2012 condition CFD model</td>
<td>2 weeks</td>
<td>$12,000</td>
</tr>
<tr>
<td>• Complete three model runs existing model</td>
<td>2 weeks</td>
<td>$6,000</td>
</tr>
<tr>
<td>• Complete three model runs pre 2012 model</td>
<td>2 weeks</td>
<td>$6,000</td>
</tr>
<tr>
<td>• Additional simulations without model modification</td>
<td></td>
<td>$1,000 each</td>
</tr>
<tr>
<td>• Model geometry modifications</td>
<td></td>
<td>$3,500 each</td>
</tr>
<tr>
<td>• Prepare final report, analysis and post processing</td>
<td>2 weeks</td>
<td>$15,000</td>
</tr>
<tr>
<td>Total CFD Study</td>
<td></td>
<td>$51,000</td>
</tr>
</tbody>
</table>

Best regards,

Dan Gessler, PE, PhD, DWRE
Vice President
<table>
<thead>
<tr>
<th>Task Description</th>
<th>HRS</th>
<th>Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Review new VFD drawings for integration into existing system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing Modifications</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Revise control system electrical schematics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revise loop drawings</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PLC Program and SCADA Software revisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revise alarms</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modify Trends</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modify Graphics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Report Modifications (?)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Install SCADA Revisions (1 Day)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Attend coordination meetings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meet with engineers and customer to coordinate project</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Electrical installation assistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review installation with installing electricians (1 Day)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Installation testing and start-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump 1 (2 Days)</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Pump 2 (2 Days)</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Pump 3 (1 Day)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pump 4 (1 Day)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pump 5 (1 Day)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Manuals and Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td>154</td>
<td>12</td>
</tr>
<tr>
<td>Rate</td>
<td>$145</td>
<td>$100</td>
</tr>
<tr>
<td>Total</td>
<td>$22,330</td>
<td>$1,200</td>
</tr>
<tr>
<td>Contingency</td>
<td>$2,233</td>
<td>$120</td>
</tr>
<tr>
<td>Project Total</td>
<td>$25,883</td>
<td></td>
</tr>
</tbody>
</table>
FOR 2015 99

<table>
<thead>
<tr>
<th>WATER POLLUTION CONTROL</th>
<th>ORIGINAL</th>
<th>TRANFRS/</th>
<th>REVISED</th>
<th>YTD EXPENDED</th>
<th>ENC/REQ</th>
<th>AVAILABLE</th>
<th>PCT USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APPROP</td>
<td>ADJSMTS</td>
<td>BUDGET</td>
<td></td>
<td></td>
<td>BUDGET</td>
<td></td>
</tr>
</tbody>
</table>

040 PUBLIC WORKS

224062 WATER POLLUTION CONTROL

<table>
<thead>
<tr>
<th></th>
<th>ORIGINAL</th>
<th>TRANFRS/</th>
<th>REVISED</th>
<th>YTD EXPENDED</th>
<th>ENC/REQ</th>
<th>AVAILABLE</th>
<th>PCT USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEWER CHARGE INTEREST</td>
<td>-65,000</td>
<td>0</td>
<td>-65,000</td>
<td>-38,993.09</td>
<td>.00</td>
<td>-26,006.91</td>
<td>60.0%</td>
</tr>
<tr>
<td>NITROGEN CRED: TRADIN</td>
<td>-65,900</td>
<td>0</td>
<td>-65,900</td>
<td>-65,525.00</td>
<td>.00</td>
<td>-375.00</td>
<td>99.4%</td>
</tr>
<tr>
<td>SEWER PERMITS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1,300.00</td>
<td>.00</td>
<td>1,300.00</td>
<td>100.0%</td>
</tr>
<tr>
<td>SEPTIC LICENSE</td>
<td>-1,500</td>
<td>0</td>
<td>-1,500</td>
<td>-100.00</td>
<td>.00</td>
<td>-1,400.00</td>
<td>6.7%</td>
</tr>
<tr>
<td>SEWER USE CHARGES</td>
<td>-13,512,961</td>
<td>0</td>
<td>-13,512,961</td>
<td>-13,752,686.00</td>
<td>.00</td>
<td>239,725.00</td>
<td>101.8%</td>
</tr>
<tr>
<td>SEPTIC DISPOSAL FEE</td>
<td>-525,000</td>
<td>0</td>
<td>-525,000</td>
<td>-219,635.00</td>
<td>.00</td>
<td>-305,345.00</td>
<td>41.8%</td>
</tr>
<tr>
<td>SEWER USE CHARGES-WILT</td>
<td>-475,000</td>
<td>0</td>
<td>-475,000</td>
<td>0</td>
<td>.00</td>
<td>-475,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>SEWER USE CHARGES-OUT</td>
<td>-52,750</td>
<td>0</td>
<td>-52,750</td>
<td>-60,265.00</td>
<td>.00</td>
<td>7,515.00</td>
<td>114.2%</td>
</tr>
<tr>
<td>REIMB. STORMWATER O&M</td>
<td>-5,000</td>
<td>0</td>
<td>-5,000</td>
<td>-5,000</td>
<td>.00</td>
<td>-5,000.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>INDUSTRIAL PRETREATMENT</td>
<td>-220,000</td>
<td>0</td>
<td>-220,000</td>
<td>-258,400.00</td>
<td>.00</td>
<td>38,400.00</td>
<td>117.5%</td>
</tr>
<tr>
<td>SEWER CONNECTION FEES</td>
<td>-100,000</td>
<td>0</td>
<td>-100,000</td>
<td>-7,660.00</td>
<td>.00</td>
<td>-92,340.00</td>
<td>7.7%</td>
</tr>
<tr>
<td>INDUSTRIAL PRETREATMENT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2,330.64</td>
<td>.00</td>
<td>2,330.64</td>
<td>100.0%</td>
</tr>
<tr>
<td>INVESTMENT INCOME</td>
<td>-43,081</td>
<td>0</td>
<td>-43,081</td>
<td>-47,844.00</td>
<td>.00</td>
<td>4,763.00</td>
<td>111.1%</td>
</tr>
</tbody>
</table>

TOTAL WATER POLLUTION CONTROL: -15,066,192

TOTAL PUBLIC WORKS: -15,066,192

TOTAL WATER POLLUTION CONTROL: -15,066,192

TOTAL REVENUES: -15,066,192

GRAND TOTAL: -15,066,192

** END OF REPORT - Generated by Dilene Byrd **
<table>
<thead>
<tr>
<th>ACCOUNT</th>
<th>ORIGINAL APPROP</th>
<th>ORIGINAL ADJUSTMENTS</th>
<th>REvised BUDGET</th>
<th>YTD EXPENDED</th>
<th>ENC/REQ</th>
<th>AVAILABLE BUDGET</th>
<th>PCT USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAGES & SALARY-REGULAR</td>
<td>332,310</td>
<td>0</td>
<td>332,310</td>
<td>168,925.33</td>
<td>.00</td>
<td>163,384.67</td>
<td>50.8%</td>
</tr>
<tr>
<td>WAGES & SALARY-OVERTIM</td>
<td>15,000</td>
<td>0</td>
<td>15,000</td>
<td>1,231.90</td>
<td>.00</td>
<td>13,768.10</td>
<td>8.2%</td>
</tr>
<tr>
<td>WAGES & SALARY-PART TI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12,777.84</td>
<td>.00</td>
<td>-12,777.84</td>
<td>100.0%</td>
</tr>
<tr>
<td>LONGEVITY</td>
<td>900</td>
<td>0</td>
<td>900</td>
<td>900.00</td>
<td>.00</td>
<td>0.00</td>
<td>100.0%</td>
</tr>
<tr>
<td>MEMBERSHIPS & DUES</td>
<td>10,000</td>
<td>0</td>
<td>10,000</td>
<td>6,428.00</td>
<td>.00</td>
<td>3,572.00</td>
<td>64.3%</td>
</tr>
<tr>
<td>ELECTRIC</td>
<td>1,487,160</td>
<td>0</td>
<td>1,487,160</td>
<td>666,049.56</td>
<td>.00</td>
<td>821,110.34</td>
<td>44.8%</td>
</tr>
<tr>
<td>TELEPHONE</td>
<td>24,000</td>
<td>0</td>
<td>24,000</td>
<td>5,512.02</td>
<td>.00</td>
<td>18,472.98</td>
<td>23.0%</td>
</tr>
<tr>
<td>LEGAL SERVICES</td>
<td>80,000</td>
<td>0</td>
<td>80,000</td>
<td>17,380.78</td>
<td>.00</td>
<td>62,619.22</td>
<td>21.7%</td>
</tr>
<tr>
<td>OMNI AGREEMENT</td>
<td>5,470,211</td>
<td>0</td>
<td>5,470,211</td>
<td>2,302,725.46</td>
<td>2,659,982.97</td>
<td>507,502.57</td>
<td>90.7%</td>
</tr>
<tr>
<td>BUSINESS EXPENSE</td>
<td>20,000</td>
<td>0</td>
<td>20,000</td>
<td>6,512.45</td>
<td>.00</td>
<td>13,487.55</td>
<td>32.6%</td>
</tr>
<tr>
<td>SEMINAR&CONFERENCE FEE</td>
<td>6,000</td>
<td>0</td>
<td>6,000</td>
<td>.00</td>
<td>.00</td>
<td>6,000.00</td>
<td>.00</td>
</tr>
<tr>
<td>OTHER CONTRACTUAL SERV</td>
<td>20,000</td>
<td>0</td>
<td>20,000</td>
<td>55,407.70</td>
<td>33,272.30</td>
<td>111,320.00</td>
<td>44.3%</td>
</tr>
<tr>
<td>INSURANCE</td>
<td>155,708</td>
<td>0</td>
<td>155,708</td>
<td>-28,680.00</td>
<td>.00</td>
<td>184,388.00</td>
<td>18.4%</td>
</tr>
<tr>
<td>EMPLOYEE BENEFITS</td>
<td>190,896</td>
<td>0</td>
<td>190,896</td>
<td>.00</td>
<td>.00</td>
<td>190,896.00</td>
<td>.00</td>
</tr>
<tr>
<td>DEBT SERVICE PRINCIPAL</td>
<td>5,669,422</td>
<td>0</td>
<td>5,669,422</td>
<td>2,362,812.28</td>
<td>.00</td>
<td>3,306,609.72</td>
<td>41.7%</td>
</tr>
<tr>
<td>RETBONUS G/F FOR PAYR</td>
<td>267,301</td>
<td>0</td>
<td>267,301</td>
<td>.00</td>
<td>.00</td>
<td>267,301.00</td>
<td>.00</td>
</tr>
<tr>
<td>IT HARDWARE</td>
<td>20,000</td>
<td>0</td>
<td>20,000</td>
<td>5,495.00</td>
<td>.00</td>
<td>14,505.00</td>
<td>27.5%</td>
</tr>
<tr>
<td>WPCA CAPITAL CONSTRUCT</td>
<td>2,950,000</td>
<td>0</td>
<td>2,950,000</td>
<td>589,507.78</td>
<td>.00</td>
<td>2,360,492.22</td>
<td>20.0%</td>
</tr>
<tr>
<td>REPAIR REPLACEMENT RES</td>
<td>1,967,284</td>
<td>0</td>
<td>1,967,284</td>
<td>.00</td>
<td>.00</td>
<td>1,967,284.00</td>
<td>.00</td>
</tr>
<tr>
<td>TOTAL WATER POLLUTION CONTROL</td>
<td>18,866,192</td>
<td>0</td>
<td>18,866,192</td>
<td>6,173,001.20</td>
<td>2,693,255.27</td>
<td>9,999,935.53</td>
<td>47.0%</td>
</tr>
<tr>
<td>TOTAL PUBLIC WORKS</td>
<td>18,866,192</td>
<td>0</td>
<td>18,866,192</td>
<td>6,173,001.20</td>
<td>2,693,255.27</td>
<td>9,999,935.53</td>
<td>47.0%</td>
</tr>
<tr>
<td>TOTAL WATER POLLUTION CONTROL</td>
<td>18,866,192</td>
<td>0</td>
<td>18,866,192</td>
<td>6,173,001.20</td>
<td>2,693,255.27</td>
<td>9,999,935.53</td>
<td>47.0%</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>18,866,192</td>
<td>0</td>
<td>18,866,192</td>
<td>6,173,001.20</td>
<td>2,693,255.27</td>
<td>9,999,935.53</td>
<td>47.0%</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>18,866,192</td>
<td>0</td>
<td>18,866,192</td>
<td>6,173,001.20</td>
<td>2,693,255.27</td>
<td>9,999,935.53</td>
<td>47.0%</td>
</tr>
</tbody>
</table>

** END OF REPORT - Generated by Dlleene Byrd **
Norwalk WPCA

Sammis Street Pump Station
Ann Street Siphon Controls
Flood Damage Upgrade
Project WPCA 2013-1

EXECUTIVE SUMMARY
January 2015

PREPARED BY:
Nicholas E Berkun
Junior Engineer

Distribution:
Lisa Burns, PE
Ralph Kolb, PE
WPCA File
Flood Damage Upgrade Project WPCA 2013-1

EXECUTIVE SUMMARY
January 19, 2015

Construction Progress

• Ann Street Siphon
 ▪ RTU and control panel installation
 ▪ Control panel mounted
 ▪ Estimated completion January 23, 2015

• Sammis Street Pump Station
 ▪ Construction progress
 ▪ New 2" water meter installed
 ▪ New Generator onsite and tested
 ▪ Water meter tap and domestic water pressurized
 ▪ Bypass Pumping
 ▪ Demolishing old pumps and piping
 ▪ New MCC and pump station control panels

 ▪ Upcoming work
 ▪ Bypass
 ▪ New water meter
 ▪ Ann Street siphon level sensors controls and SCADA

Project Administration

• Sammis Street Pump Station
 ▪ Submittals and RFIs – more notable changes to the original scope of work include:
 ▪ Clean and coating of wetwell
 ▪ Spray on epoxy liner to rehabilitate corroded concrete
 ▪ Colors selected
 ▪ Fence style selected

 ▪ Potential Change Orders
 ▪ Reinforced pole with fall arrest compliant system for wetwell ladder and entrance
 ▪ Piping for hatch drains
 ▪ Pave walking path
 ▪ Water seal contact between top slab (floor) and foot wall foundation for new building

• Ann Street Siphon
 ▪ Contractor will be installing new sensors and flow meter
 ▪ WPCA may keep old sensors and meter for future use
 ▪ Work scheduled to begin Monday January 12, 2015
PHOTOGRAPH 1 New transformer

PHOTOGRAPH 2 Generator testing

PHOTOGRAPH 3 Bypass pumping

PHOTOGRAPH 4 Cleaning Wetwell

PHOTOGRAPH 5 Remove old pumps/ piping

PHOTOGRAPH 6 Install new pumps/ piping
1 Plant Activities

A Maintenance

MRR Repairs/Upgrades

Safety Instruments made repairs to gas detection system in Head Works Building.
Replaced Bearing on gravity belt thickener
AEM Replaced stator on MLP #1

Work orders |MC
of WOs completed
This Month 578
Ending WO backlog 253
Last Month 489
266

B Violations

Permit Monthly
Excursion - Reason

none

Performance Guarantee
none

C Training

Safety
Emergency Preparedness 72 hour Checklist
Daily Desk Stretches, AHA Influent pump #1 removal.
Happy Holidays Newsletter, Safety Talk- Avoiding Incidents at Work, Cold Weather Safety, Frostbite, and Hypothermia

Other
Pump Station SCADA Training, Avoid Road Rage Traffic Safety Lessons Learned-Exploding Power Bank.

2 Collection Systems

A Pump Stations

MRR Repairs/Upgrades
None

B Collection System

Spill / Overflow Reports

12-7-14 Secondary scum well overflow 3000 Gal
12-9-14 Keeler Brook PS,10,000 gallon spill, Old trolley Way FS 180,851 gal spill, 56 Beacon St. 67,500 gal spill. Heavy rain 12-11-14 Pine Point Rd. 2200 gal. spill. Penna repaired line

12-15-14 Secondary scum well 2175 gal. Plugged scum trough
12-30-14 540 Main Ave. 10 gal. spill Flushed and cleared line
12-30-14 360 Connecticut Ave. 3325 gal spill. Flushed line, scheduling repair

6-11
Personnel

A Number of Associates / Wastewater Operator Certifications

<table>
<thead>
<tr>
<th></th>
<th>Total Personnel</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Operations</td>
<td>6</td>
<td>Class IV 2</td>
</tr>
<tr>
<td>Maintenance</td>
<td>9</td>
<td>Class III 3</td>
</tr>
<tr>
<td>Collection Systems</td>
<td>5</td>
<td>Class II 3</td>
</tr>
<tr>
<td>Administration</td>
<td>2</td>
<td>Class I 3</td>
</tr>
<tr>
<td>Turnover</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

B Changes

None

Safety

OSHA Recordable Incidents

None

Lost Time Incidents

None

Total Nitrogen Performance

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Influent Wastewater Temp. (°C)</td>
<td>15</td>
</tr>
<tr>
<td>Avg. BOD Loading (lbs./day)</td>
<td>21,032</td>
</tr>
<tr>
<td>Actual TN Performance (lbs./day)</td>
<td>633</td>
</tr>
<tr>
<td>Lookup Value (lbs./day)</td>
<td>1,366</td>
</tr>
<tr>
<td>Actual minus Lookup (lbs./day)</td>
<td>733</td>
</tr>
<tr>
<td>TN Performance Band</td>
<td>D</td>
</tr>
<tr>
<td>Uncontrollable Circumstances</td>
<td>None</td>
</tr>
</tbody>
</table>

Operational Review Findings

None

SOP Status

Inventory at targets.

Description of Ranges/Bands

- **Expected Operating Range**
 - Band A: aTN between 1 to 175 lbs./day less than LV
 - Band B: aTN between LV and up to 117 lbs./day in excess of LV
 - Band C: aTN greater than 117 lbs./day in excess of LV
 - Band D: aTN 176 lbs./day less than LV

Miscellaneous

Regulatory Inspections

None

Storm Flow Events

12-9-14 Heavy Rain 3"+
1. Plant Operations
 A. Major Parameters

 Monthly average
 BOD (mg/l)
 - December-14

 Monthly average
 TSS (mg/l)
 - December-14

 Monthly average
 Fecal (#/100 ml)
 - December-14

 Monthly average
 TN (lbs/day)
 - December-14

 12-month Rolling average
 TN (lbs/day)
 - December-14

 Flow MGD
 - December-14
1) Collection System Data Management and Inspection

 (a) Cityworks cata entry for December 2014 are reflected in attached tables
 (i) Monthly TV numbers are lower than KPI in O&M manual due to targeting deformed pipes and critical issues. Next month’s TV inspection efforts continue to focus on documenting known critical areas.
 1. Monthly rolling averages
 a. TV - 0.94 miles a month
 b. Cleaning - 6.52 miles a month
 (ii) Work Order templates can now be generated and will be used in the future to convey WOs from the Collection systems management team.
 1. Older clay pipes that haven’t been TV’d in over 7 years (downtown)
 2. Sewer problem areas

 (b) Hot spot list
 (i) Final review of list will be completed and are being put into GIS.
 (ii) Since updated monthly work on hot spots will be tracked/documentation separately for clarity.
 (iii) Friday the 14th of Nov, crews started with week 1 of hotspot list. They have now completed through week 4 (out of 9 weeks – holidays, vacations, cold weather)

 (c) Deformed pipe list
 (i) 51 out of 61 deformed pipe segments have been inspected and these pipes have been reviewed and rated based on LOF, COF and total risk.

 (d) Pipe condition downstream of PS forcemain
 (i) TV work now complete and these pipes have been reviewed and rated based on LOF.

 (e) Protruding laterals
 (i) Cutter has been used to remove protruding laterals as they are found
 (ii) A list will be generated for any outstanding laterals if required. Some have been removed and there are no outstanding protruding laterals remaining.

 (f) Manhole raising
 (i) No manholes were identified to be raised.

 (g) Action Items
 (i) Identify pipes in easements through a GIS layer.
 1. Sewers in easements have been identified. This will be added to the GIS in the same fashion as the Hotspots list.
 (ii) Update sewer problem areas in Norwalk GIS.
 1. Hotspot list has been verified and will be placed into GIS.

2) Major Repair & Replacement Projects:

 (a) 47 Wall Street and Metro North
 (i) Scheduled for 1/14/15

 (b) Betts Place & Harvey St – CCTV work is needed, update GIS information, cut pipe
 (i) Detts to Seaview Ave CCTV completed.
 (ii) CCTV of upstream line from Betts to Harvey to be performed in January.

 (c) New Manholes - Bouton Street, Seaview – Add MHs for maintenance
 (i) Penna waiting for DPW permits.

 (d) Pine Point Road
 (i) 800 linear foot repair required

 (e) Connecticut Avenue
 (i) Previous point repair fix required
 (ii) State permits required
3) WPCA Capital Improvement Projects (CIPs):

 (a) Beacon St Project
 (i) Heitkamp – cleaning and cctv
 (ii) Point repairs – AJ Penna
 (b) Bouton St and Ely Ave
 (i) This area will continue to monitored for a potential new pump station
 (ii) OMI will continue to monitor on a monthly basis for any changes

4) Current Evaluations:

 (a) Saddle Road
 (i) Smoke test results show minor indirect connections
 (ii) Still no verification of SSO. Seems like stormwater flooding.
 (iii) Manhole surcharge meters installed on two manholes to monitor.
 (b) Potential Future Projects
 (i) Newtown Avenue – State project continue to monitor schedule
 (c) East Avenue (West Port Ave to Merrill)– Wet weather issues– OMI CCTV data Merrill @ East Ave –
 state drainage tied to sanitary?
 (i) An inspection plan will be prepared
 (d) Day and Raymond Street
 (i) Deformed pipe needs to be assessed ahead of street raising/rebuild
 (e) Locate all Pump Station Forcemains
<table>
<thead>
<tr>
<th></th>
<th>MILES</th>
<th>FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTV (FEET)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>0.32</td>
<td>1,668</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>0.32</td>
<td>1,668</td>
</tr>
<tr>
<td>CLEANING (FEET)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>5.43</td>
<td>28,687</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>5.43</td>
<td>28,687</td>
</tr>
</tbody>
</table>
GRAND TOTAL: 29

<table>
<thead>
<tr>
<th>INSPECTIONID</th>
<th>LOCATION</th>
<th>INSPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2971</td>
<td>24 CAVANAUGH ST</td>
<td>12/03/2014</td>
</tr>
<tr>
<td>2983</td>
<td>4 BARTLETT MNR</td>
<td>12/04/2014</td>
</tr>
<tr>
<td>2994</td>
<td>21 BARTLETT MNR</td>
<td>12/04/2014</td>
</tr>
<tr>
<td>2995</td>
<td>22 RARTI FTT MNR</td>
<td>12/05/2014</td>
</tr>
<tr>
<td>2996</td>
<td>3 LAKE ST</td>
<td>12/05/2014</td>
</tr>
<tr>
<td>3010</td>
<td>3 WOODLAWN AVE</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3011</td>
<td>5 Shaw Ave</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3012</td>
<td>12 WOODLAWN AVE</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3013</td>
<td>164 WOODWARD AVE</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3014</td>
<td>9 BURWELL ST</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3015</td>
<td>16 BURWELL ST</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3016</td>
<td>1 SEABREEZE PL</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3017</td>
<td>21 NAROMAKE AVE</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3018</td>
<td>11 NAROMAKE AVE</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3019</td>
<td>2 NAROMAKE AVE</td>
<td>12/19/2014</td>
</tr>
<tr>
<td>3020</td>
<td>8 Chatham Dr</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3021</td>
<td>4 SPICEWOOD RD</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3022</td>
<td>12 SPICEWOOD RD</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3023</td>
<td>94 BOUTON ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3024</td>
<td>49 GLASSER ST-</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3025</td>
<td>7 BOUTON ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3026</td>
<td>101 BOUTON ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3027</td>
<td>158 BOUTON ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3028</td>
<td>22 GLASSER ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3029</td>
<td>16 GLASSER ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3030</td>
<td>8 GLASSER ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3031</td>
<td>5 MICHAEL ST</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3032</td>
<td>10 BEAUFORD RD</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>3033</td>
<td>3 BEAUFORD RD</td>
<td>12/18/2014</td>
</tr>
<tr>
<td>REQUESTID</td>
<td>PROADDRESS</td>
<td>DISPATCHTO</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>180454</td>
<td>11 Newtown Ter</td>
<td>CARPENTER, ALAN</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101309</td>
<td>143 Wulfil Ave</td>
<td>PERMITS, DPW</td>
</tr>
<tr>
<td>180755</td>
<td>7 KELLEE CT</td>
<td>NIEVES, BEN</td>
</tr>
<tr>
<td>180772</td>
<td>138 STUART AVE</td>
<td>NIEVES, BEN</td>
</tr>
<tr>
<td>180773</td>
<td>138 Stuart Ave</td>
<td>CARPENTER, ALAN</td>
</tr>
<tr>
<td>180775</td>
<td>60 Howard Ave</td>
<td>NIEVES, BEN</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181296</td>
<td>17 Island Dr</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180745</td>
<td>15 Burritt Ave</td>
<td>PIANTINI, ARCI</td>
</tr>
<tr>
<td>180950</td>
<td>32 RAMPART RD</td>
<td>CARPENTER, ALAN</td>
</tr>
<tr>
<td>180952</td>
<td></td>
<td>CARPENTER, ALAN</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180957</td>
<td>92 Country Ln</td>
<td>PIANTINI, ARCI</td>
</tr>
<tr>
<td>180981</td>
<td>137 Woodward Ave</td>
<td>PIANTINI, ARCI</td>
</tr>
<tr>
<td>181285</td>
<td>149 Partrick Ave</td>
<td></td>
</tr>
<tr>
<td>181286</td>
<td>12 Harding St</td>
<td></td>
</tr>
<tr>
<td>181330</td>
<td>540 Main Ave</td>
<td></td>
</tr>
<tr>
<td>181331</td>
<td>349 Connecticut Avenue</td>
<td>NIEVES, BEN</td>
</tr>
<tr>
<td>180546</td>
<td>27 Parkhill Ave</td>
<td>PIANTINI, ARCI</td>
</tr>
<tr>
<td>180650</td>
<td>58 Howard Ave</td>
<td>NIEVES, BEN</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL: 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>